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Three questions

Why are climate projections necessary?

How do we generate climate
projections?

What can we do with climate
projections?



The planet is warming — faster
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Increased risk of exireme hedat

>70,000 deaths

15% of Portugal’s
forests destroyed by
fire (+18 deaths)

Flash floods in the
Alps from melting
glaciers
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Snow-covered ared Is
decreasing

March - April NH snow-covered area
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ANnd Is likely o continue 1o
decrease
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lce cover on
lakes is coming
later anad
ending earlier
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Glaciers are melting

1913 2005

Shepard Glacier, Glacier National Park, USA (USGS)

By 2030, Glacier National Park could be glacier-free.



Arctic sea ice has been steadily
decreasing

1979-2000 median minimum Ove r Ia St 40 yrS :

* Summer sea ice
extent decreased by
15-20% on average

* By 40% in 2007

e |ce-free summers
likely within a few
years

September 16, 2007 Sea Ice Concentration (percent)
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Three questions

* Why are climate projections necessary?

— Climate today is changing in ways that can’t
be predicted by the past

* How do we generate climate
projections?

e What can we do with climate
projections?



How do we know what to plan for?
Computer simulations of the earth system



Based on physical governing
equations

1. Conservation of momentum (F=ma for
pressure differences and the Coriolis force)

2. Hydrostatic equation (how pressure varies
with height - gravitational force balanced by
pressure gradient force)

3. Conservation of energy (change in energy is
equal to net transfer across boundaries by
advection, evaporation, condensation)



Based on physical governing
equations

Continuity equation (conservation of mass —
mass is neither created nor destroyed)

Equation of state (ideal gas law relates
pressure, density and temperature)

Water vapor equation (accounts for changes
in water vapour amounts due to advection,
condensation, evaporation)



Modeling the climate system
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WHAT IS
CAUSING
CLIMATE
CHANGE
TODAY?
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At the continental scale ...

observations (black) natural (blue) natural + human (pink)
temperature increases from 1900 to 2000
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Into the future
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Heat Extremes and Growing
Seqason

Heat waves
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Why are regional projections




CLIMATE MODEL GRIDS




Simulating sub-grid-scale climate based on output from global models

By explicit solving of process-
based physical dynamics of
the regional climate system

By developing a statistical
relationship between local
climate variables and global
model predictors

STATISTICAL DYNAMIC
DOWNSCALING DOWNSCALING
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number of days per year (May-Sept)

Statistical downscaling

= 0BS
GFDLCM2.1

— HadCM3

— PCM

dailv maximum temperature (°C)

Assemble historical observations 3.

Develop statistical relationship
between model and observations 4.

== 1961-1990
== B1 2070-2099

= A1FI 2070-2099

number of days per year (May-Sept)

0 10 20 30 40 50 60

dailv maximum tempberature (°C)

Test relationship using subset of
historical data

Use relationship to generate future
projections at the regional to local
scale



Comparing regional models to stafistical downscaling

HCN Summertime Max Temp: 1990s
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Comparing regional models to statistical downscaling

HCN Summertime Precip: 1990s SD Summertime Min Temp: 1990s
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Three questions

 Why are climate projections necessary?

* How do we generate climate
projections?
— Using state-of-the-art global climate models

combined with the latest statistical and
dynamical downscaling methods

e What can we do with climate
projections?
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Snowcover In the Northeast

Historic Area (1961-1990)
B Late-century Area (2070-2099)




Decreasing California Sierra
Snowpack

Decreasing California Snowpack

Historical Average (1961-1990) 2070-2099

Lower Warming Range Medium Warming Range
Drier Climate Drier Climate
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Increasing wildfire frequency

Increasing Wildfire Frequency

Historical Average (1961-1990) 2070-2099

Lower Warming Range Medium Warming Range
Wetter Climate Drier Climate

_ 55%
Increase

I |
0 0.06 0.12 0.19 0.25

Probability of a large wildfire (more than 200 hectares)




Shiffing plant hardiness zones

1990 Map

2006 Map

After USDA Plant Hardiness
Publication No. 14

Hardiness Zone

Plant Hardiness Zone Map
.2006.



California Cabernet Sauvignon quality
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data available for analyses.
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Three questions

 Why are climate projections necessary?
— Climate today is changing in ways that can’t be
predicted by the past

* How do we generate climate projections?
— Using state-of-the-art global climate models combined
with the latest statistical and dynamical downscaling
methods

 What can we do with climate projections?
— Analyze the impacts of higher and lower emission
pathways on anything from wildfire to wine grapes



THE END

FOR MORE INFORMATION
WWW.KATHARINEHAYHOE.COM

FOR SAMPLE DATA
WWW.NORTHEASTCLIMATEDATA.ORG
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Habitat and
Wildlife Response
to Climate Change

Virginia Burkett
Chief Scientist for Global Change Research
US Geological Survey



National Climate Change and Wildlife Science Center Workshop

: December 3-4, 2008
o u t I I n e Lanes(j?wzz, Virginia

* Broad characterization of observed and anticipated
changes in species and habitats

* Progress in capacity to forecast change
— Examples of new tools and current approaches

 Complexities in predicting response — in supporting
management

* Science and technology deficiencies



IPCC (2007) Key Conclusions Relating to
Fish, Wildlife, and Habitats

* During the course of this century the resilience of many ecosystems is likely to
be exceeded by an unprecedented combination of change in climate,
associated disturbances (e.g., flooding, drought, wildfire, insects, ocean
acidification) and in other global change drivers (especially land-use change,
pollution and over- exploitation of resgurces), if greenhouse gas emissions
and other changes continue at or ab@zurrent rates (high confidence).

(a) CO2 emissions (b) CO2 concentrations -
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* Ecosystems and species are very likely to show a wide range of
vulnerabilities to climate change, depending on imminence of exposure
to ecosystem-specific, critical thresholds (very high confidence).

Temperature thresholds at which
permafrost and sea ice thaw are key
tipping points for Arctic ecosystems

An increase of 1°-
2° Cin summer
ocean
temperature
maxima causes
corals to bleach




With global average temperature changes of 2°C above pre-industrial
levels many terrestrial, freshwater, and marine species (particularly
endemics across the globe) are at a far greater risk of extinction than in
the geological past (medium confidence).

Globally ~20% to ~30% of species will be at increasingly high risk of
extinction by 2100 if global mean temperatures exceed a warming of 2 to
3°C above pre-industrial levels (medium confidence).

Substantial changes in structure and functioning of terrestrial, marine, and
freshwater ecosystems are very likely to occur with a global warming of >
2 to 3°C above pre-industrial levels (high confidence).

T 1 0.74°C past 100 yrs, T 1 0.65°C past 50 yrs



e More evidence from a wider range of species and communities in
terrestrial ecosystems and substantial new evidence in marine and freshwater

systems show that recent warming is strongly affecting natural biological
systems (very high confidence).

— poleward and elevational range shifts of flora and fauna.
— changes in the timing of growth events

— changes in abundance of certain species

Bull Trout (FWS photo)

American Pika




N. American Wildlife — examples of observed changes in phenology and
geographic range due to climate change

Warmer springs have led to earlier nesting for 28 migrating bird species on the
east coast of the U.S., earlier egg laying for Mexican jays and tree swallows.

Red foxes have expanded northward in northern Canada, leading to retreat of
competitively subordinate arctic foxes. In northern Canada, red squirrels breed
18 days earlier than 10 years ago.

Several frog species now initiate breeding calls 10-13 days earlier than a century
ago. Many frog species have shifted their ranges, typically to the north or to
higher elevations.

Edith’s checkerspot butterfly - locally extinct in the southern, low elevation
portion of its western range but extended its range 90 km north and 120 m
higher in elevation.



Physical and biological systems on all continents and in some oceans are
already being affected by recent climate changes, particularly regional
temperature increases (very high confidence).

Climate change is strongly affecting many aspects of systems related to the
cryosphere, emerging evidence shows changes in hydrological systems, water
resources, coastal zones and oceans (high confidence).

Current conservation practices are generally poorly prepared to
adapt to this level of change, and effective adaptation responses
are likely to be costly to implement (high confidence).




Emerging progress in predicting how changes in
the physical climate system will affect fish,
wildlife, and habitats

e Scale of climate models is moving
towards scale of resource
management

PCM Summertime Max Temp: 1990s
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Emerging progress in predicting how changes in
the physical climate system will affect fish,
wildlife, and habitats

Scale of climate models is
moving towards scale of
resource management

Thousands of species- and
ecosystem-specific records of
observed change have increased
the knowledge base for
simulating wildlife impacts
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* Polar regions include also observed changes in marine and freshwater biological systems.
** Marine and freshwater includes observed changes at sitesand large areas in oceans, small islands and continents.
*** Circles in Europe represent 1 to 7500 data series.




Emerging progress in predicting how changes in
the physical climate system will affect fish,
wildlife, and habitats

Scale of climate models is
moving towards scale of
resource management

Thousands of species- and
ecosystem-specific records of
observed change have increased
the knowledge base for
simulating wildlife impacts

Scenarios of future change have
been produced for some species
and biomes

Current Distribution of
Wild Brook Trout

y

+8.5°C Q
78.4 % loss

.....

Prédicted Distribution of
Wild Brook Trout

From: Flebbe et al. 2006



Examples of recent studies that link
Climate Model Scenarios and Species Responses

Plant hardiness zones in Chicago

Eastern Forests

Native flora on the West Coast

Bird species in the Midwest

Small mammal populations in the Great Lakes
South Florida mangrove forests

o h W=



Shifting plant hardiness zones

1990 Map 2006 Map

After USDA Plant Hardiness Zone Map, USDA Miscellaneous National Arbor Day Foundation Plant Hardiness Zone Map
Publication No. 1475, Issued Januay 1990 published 1n 2006.
Zone
2 3 4 5 6 7 8 9 10

The plant hardiness zone for Dallas has a/ready shifted to
become more like Houston was in 1990 (just 20 yrs ago).



Projected shifts in Plant Hardiness

Present 5b Zones for the Chicago area

2010-2039 6a

2040-2069 A 6b (O 6a

2070-2009 A7a  Oeo A shift of about one full zone
A1 (high)  B1 (low) is projected to occur every

ORI 30 years under higher
P s emissions, and half a zone

under lower emissions.

By end-of-century, Chicago
could feel like northern AL
under higher emissions, and
southern IL/MO under lower
emissions.

NOTE: “Present-day” map is based on observed temperatures from 1978 to 1986.



Forest Type Maps

GCM3Avg Hi ! HADLEY Hi

Summary of Potential Forest Type Changes

Projected Shifts in Eastern
Forests

Shifts in suitable habitat for native species
by end-of-century (2070-2099)

US Forest Service — models of tree
species from the eastern United States
for their potential response to climate
change.

134 tree species at 20 km resolution.

 Three GCMs (Hadley, PCM & GFDL)
« Two emission scenarios (high carbon and
low carbon scenarios)
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: Atlas Background : Acronyms : Caution! : Atlas Help : Other Links (DropDownMenu)

You are here: Climate Change Atlas [ Tree Atlas / Muttall oak page [ Futurs IV Pags

Nuttall oak (Quercus nuttallii)

Abundance Change Maps by GCM Scenario
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USDA United States Depariment of Agriculture
s Forest Service
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Native flora on the West Coast
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California’s varied terrain could cause
species to move in very different directions

2/3 of 5,000 endemic species likely to
experience range reductions greater than
80%
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Native flora on the West Coast

The greater the
climate change,
the greater the
magnitude of
species extinctions
expected

Higher emissions |
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0]

Present distributions of species expected to become extinct within 80 years

(Loarie, Hayhoe, et al., 2008)



Bird Species in the Midwest

Projected distribution and abundance under climate change for one species that
will likely undergo a large decrease from the Chicago region, the American

goldfinch, and one that will likely undergo a large increase, the Summer Tanager.

American Goldfinch Summer Tanager
Carduelis tristis Piranga rubra
""" Lake Superior Lake Superior f , Lake Superior Lake Superior
: 7 A . M e
E B \‘\ =
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Projected to arrive Projected to disappear

Blue grosbeak

Mississippi kite House finch

Diana Spotted sandpiper

fritillary

E———rmm——n

(Matthews et al. 2004; Opler et al. 2006) Frosted elfin



Frankhn S ground squmel

e Temperature-sensitive species,
hibernates from Sept to April
e By end-of-century, climate changes are
likely to force small mammal migrations
either:

- NE into Michigan, potentially dead-ending

at Straits of Mackinaw
- NW through the Chicago Metro &

suburban region (nearly impassable)

Small Mammal Migration

Franklin’s Ground Squirrel - Spermophilus franklinii

e Formerly common prairie species in IL and IN
® 99% of habitat lost after settlement of prairies
* Now on state endangered species list

== Higher emissions e

Lower emissions
ead end
thraough
Chicago
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SELVA/MANGRO Forecasts
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How will climate change affect other plant and
animal species in North America?

Invasive species

Aquatic species

Amphibians and reptiles
Ungulates

Pests and pathogens
Waterfowl

Endangered plants and animals



Managing Fish and Wildlife in a Changing Climate:
Scientific Obstacles

Interactions are difficult to predict and simulate — e.g., invasive species,
differential response to climate drivers
Climate models simulate averages, not extreme events that structure ecosystems

Intrinsic and extrinsic thresholds are not captured by current ecological models,
not even known for most species

Scale of knowledge does not match scale of management
Uncertainty in forecasting can be reduced, but will always exist
Poorly developed coordination mechanisms to link efforts

No methodical, systematic approach for assessing impacts and supporting
adaptation

— NOAA Climate Services concept — border to border, consistent quality and
scale, forecasts and monitoring components, partner driven.

— Need a comparable approach for fish and wildlife
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Southeast BCR Project Objectives

Estimate the historic rate of landscape-level change in Land
Use And Land Cover in relation to change in climate
parameters.

Use historic data to estimate the rates of change in Bird
Distribution in relation to changes in climate and landscape
parameters.

Use appropriately-scaled climate models to project the effects
on Regional Climate.

Use regional climate predictions to predict the effects of
climate change on Landscapes and Bird Distributions

Test prototype for other BCRs



Climate-related tasks and products, Year 1:

1.

w

Assess observed changes in climate since 1900 and 1970 for each BCR in the
Southeast

Obtain existing statistically and dynamically downscaled model output fields
Extract relevant variable fields for the geographical region of interest
Identify relevant impact indicators and resolve climate metrics to be
projected

Derive historical simulations and future projections of climate metrics from
statistically and dynamically downscaled fields

Assimilate results into eight Southeastern Bird Conservation Regions
Compare projections from statistically vs. dynamically downscaled projections
to evaluate the relative strengths and weaknesses of each approach

Maps showing projected changes in climate metrics across the Southeast
region for three future time periods (2010-2039, 2040-2069, 2070-2099)



Partnerships sought

e Steering Committee — NCCWSC, State of Tennessee, FWS
 FWSR4-GlISlab

e Other SE States, agency personnel interested in or trained in
modeling

e NOAA and Forest Service
* NEON/LTER/NPN

Broad goals

- explore approaches for assessing impacts on fish and wildlife
- experience for USGS coop units, FWS, FS, and States

- building capacity to enhance fish and wildlife conservation



